Fiszki

Egzamin z mechaniki gruntów

Test w formie fiszek Egzamin z mechaniki gruntów
Ilość pytań: 52 Rozwiązywany: 3415 razy
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ 1 oraz δ 2 =δ 3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ 1 i δ 2
Punkt o współrzędnych (δ 1 , δ 2 = δ 3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ 1 =δ 2 oraz δ 3
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ 1 oraz δ 2 =δ 3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ 1 i δ 2
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Największe napręzenie główne w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Koło naprężeń Mohra:
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Jest graficznym obrazem stanu naprężenia w punkcie
Ma środek w punkcie o współrzędnych (δ 1 – δ 3 /2, 0)
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od(2lub3 odpowiedzi):
Zastosowanej ścieżki naprężenia
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Zastosowanego kryterium ścinania
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Odkształcenie objętościowe jest równe:
Ev= delta V/V0
E v =E1 + E2 + E3
Ev= E1 – E2
Ev= Ex + Ey + Ez
Ev=E1 * E2 * E3
Ev= delta V/V0
E v =E1 + E2 + E3
Ev= Ex + Ey + Ez
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Prawo niezależności naprężeń
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
Drugie prawo Hooke’a
Pierwsze prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
W badaniu prostego ścinania ma miejsce:
Zmiana objętości i postaci
Wyłącznie zmiana postaci
Wyłącznie zmiana objętości
Odkształcenie czysto objętościowe
Dystorsja
Wyłącznie zmiana postaci
Dystorsja
Na wartość wyporu wody w gruncie wpływa:
Ciężar objętościowy gruntu
Wartość ciśnienia porowego na danej głębokości
Objętość rozpatrywanej bryły gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ’ = δ - u g
δ’ = (δ – u g ) + ϗ (u g –u)
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ’ = δ - u g
δ’ = (δ – u g ) + ϗ (u g –u)
δ’ = δ – u
Które z poniższych stwierdzeń jest słuszne:
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie spływowe to:
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe może być przyczyną:
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Spadku naprężeń efektywnych
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Spadku naprężeń efektywnych
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Pomiar ciśnienia porowego
Konsolidacja wstępna
Konsolidacja wstępna
Które z wymienionych parametrów są parametrami ściśliwości:
M o
a v
K G
C e
Sigma’ p
M o
a v
Które z poniższych stwierdzeń jest słuszne:
Badanie endometryczne jest jedną z metod typu CL
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Dla danego gruntu M 0 jest mniejsze od E 0
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr C c dla zakresu naprężeń mniejszych od sigma’ p ma wartość większą niż dla zakresu naprężeń większych od sigma’ p
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Casagrande’a
Jaky
Taylora
Laplace’a
Terzaghi’ego
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Tensor naprężenia w punkcie M
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to:
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym:
Edometryczny ściśliwości pierwotnej (M 0 )
Sprężystości objętościowej (K)
Odkształcenia płaskiego (G)
Sprężystości podłużnej (E)
Ścinania (D)
Sprężystości objętościowej (K)
Odkształcenia płaskiego (G)
Sprężystości podłużnej (E)
Ścinania (D)