Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Koło naprężeń Mohra:
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Jest graficznym obrazem stanu naprężenia w punkcie
Jest graficznym obrazem stanu naprężenia w punkcie
Koło naprężeń Mohra:
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Jest graficznym obrazem stanu naprężenia w punkcie
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Składu granulometrycznego gruntu
Zastosowanego kryterium ścinania
Wartości naprężenia efektywnego
Zastosowanej ścieżki naprężenia
Warunków konsolidacji i drenażu
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Składu granulometrycznego gruntu
Zastosowanego kryterium ścinania
Wartości naprężenia efektywnego
Zastosowanej ścieżki naprężenia
Warunków konsolidacji i drenażu
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Odkształcenie objętościowe jest równe: (?)
Ev= delta V/V0
Ev= E1 – E2
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Ev=E1 * E2 * E3
Ev= delta V/V0
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Odkształcenie objętościowe jest równe: (?)
Ev= delta V/V0
Ev= E1 – E2
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Ev=E1 * E2 * E3
Ev= delta V/V0
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Prawo sprężystości dla ciał izotropowych
Pierwsze prawo Hooke’a
Drugie prawo Hooke’a
Uogólnione prawo Hooke’a
Prawo niezależności naprężeń
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Prawo sprężystości dla ciał izotropowych
Pierwsze prawo Hooke’a
Drugie prawo Hooke’a
Uogólnione prawo Hooke’a
Prawo niezależności naprężeń
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
W badaniu prostego ścinania ma miejsce: (?)
Wyłącznie zmiana postaci
Dystorsja
Wyłącznie zmiana objętości
Zmiana objętości i postaci
Odkształcenie czysto objętościowe
Wyłącznie zmiana postaci
Odkształcenie czysto objętościowe
W badaniu prostego ścinania ma miejsce: (?)
Wyłącznie zmiana postaci
Dystorsja
Wyłącznie zmiana objętości
Zmiana objętości i postaci
Odkształcenie czysto objętościowe
Wyłącznie zmiana postaci
Odkształcenie czysto objętościowe
Na wartość wyporu wody w gruncie wpływa:
Objętość rozpatrywanej bryły gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Ciężar objętościowy gruntu
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Wartość ciśnienia porowego na danej głębokości
Objętość rozpatrywanej bryły gruntu
Na wartość wyporu wody w gruncie wpływa:
Objętość rozpatrywanej bryły gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Ciężar objętościowy gruntu
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Wartość ciśnienia porowego na danej głębokości
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ = δ’ + u
δ’ = δ - ug
δ’ = δ – u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
δ’ = (δ – ug) + ϗ (ug –u)
δ = δ’ + u
δ’ = δ – u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
δ’ = (δ – ug) + ϗ (ug –u)
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ = δ’ + u
δ’ = δ - ug
δ’ = δ – u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
δ’ = (δ – ug) + ϗ (ug –u)
δ = δ’ + u
δ’ = δ – u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
δ’ = (δ – ug) + ϗ (ug –u)
Które z poniższych stwierdzeń jest słuszne:
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Które z poniższych stwierdzeń jest słuszne:
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Ciśnienie spływowe to:
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe to:
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe może być przyczyną:
Powstania kurzawki
Wzrostu naprężeń efektywnych
Utraty zdolności do przenoszenia przez grunt obciążeń
Przebicia hydraulicznego
Spadku naprężeń efektywnych
Powstania kurzawki
Wzrostu naprężeń efektywnych
Utraty zdolności do przenoszenia przez grunt obciążeń
Przebicia hydraulicznego
Spadku naprężeń efektywnych
Ciśnienie spływowe może być przyczyną:
Powstania kurzawki
Wzrostu naprężeń efektywnych
Utraty zdolności do przenoszenia przez grunt obciążeń
Przebicia hydraulicznego
Spadku naprężeń efektywnych
Powstania kurzawki
Wzrostu naprężeń efektywnych
Utraty zdolności do przenoszenia przez grunt obciążeń
Przebicia hydraulicznego
Spadku naprężeń efektywnych
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Pomiar ciśnienia porowego
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Pomiar ciśnienia porowego
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Które z wymienionych parametrów są parametrami ściśliwości
Sigma’p
av
Mo
Ce
KG
av
Mo
Które z wymienionych parametrów są parametrami ściśliwości
Sigma’p
av
Mo
Ce
KG
av
Mo
Które z poniższych stwierdzeń jest słuszne:
Dla danego gruntu M0 jest mniejsze od E0
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Badanie endometryczne jest jedną z metod typu CL
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Które z poniższych stwierdzeń jest słuszne:
Dla danego gruntu M0 jest mniejsze od E0
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Badanie endometryczne jest jedną z metod typu CL
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Casagrande’a
Taylora
Laplace’a
Jaky
Terzaghi’ego
Casagrande’a
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Casagrande’a
Taylora
Laplace’a
Jaky
Terzaghi’ego
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Składowe stanu odkształcenia to: (?)
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
Składowe stanu odkształcenia to: (?)
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym:
Ścinania (D)
Sprężystości objętościowej (K)
Odkształcenia płaskiego (G)
Sprężystości podłużnej (E)
Edometryczny ściśliwości pierwotnej (M0)
Sprężystości objętościowej (K)
Sprężystości podłużnej (E)
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym: