d) Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
a) Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
c) Siła masowa wywołana filtrującą wodą
b) Parcie spływowe przypadające na jednostkę objętości gruntu
a) Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Które z poniższych stwierdzeń jest słuszne:
b) Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
e) Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
d) Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
c) Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
a) Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
b) Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
d) Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
a) Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
c) δ’ = δ - ug
e) δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
a) δ’ = δ – u
b) δ = δ’ + u
d) δ’ = (δ – ug) + ϗ (ug –u)
e) δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
a) δ’ = δ – u
b) δ = δ’ + u
Na wartość wyporu wody w gruncie wpływa:
a) Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
d) Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
e) Ciężar objętościowy gruntu
c) Objętość rozpatrywanej bryły gruntu
b) Wartość ciśnienia porowego na danej głębokości
c) Objętość rozpatrywanej bryły gruntu
W badaniu prostego ścinania ma miejsce:
c) Zmiana objętości i postaci
a) Wyłącznie zmiana postaci
d) Odkształcenie czysto objętościowe
e) Dystorsja
b) Wyłącznie zmiana objętości
a) Wyłącznie zmiana postaci
e) Dystorsja
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
a) Ev =E1 + E2 + E3
b) Ev= Ex + Ey + Ez
c) Ev=E1 * E2 * E3
d) Ev= delta V/V0
e) Ev= E1 – E2
a) Ev =E1 + E2 + E3
b) Ev= Ex + Ey + Ez
d) Ev= delta V/V0
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od: