Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz δ2=δ3
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz δ2=δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można
wyznaczyć:
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Największe napręzenie główne w punkcie A
Ciśnienie porowe w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Największe napręzenie główne w punkcie A
Ciśnienie porowe w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
. Koło naprężeń Mohra:
Jest graficznym obrazem stanu naprężenia w punkcie
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego
parametry wytrzymałości na ścianie będą zależeć od:
Zastosowanej ścieżki naprężenia
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Zastosowanego kryterium ścinania
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Wytrzymałość na ścinanie jest oporem jaki stawia grunt siłom ścinającym:
W płaszczyźnie najniekorzystniejszego działania naprężeń
W płaszczyźnie maksymalnych naprężeń stycznych
W granicznym stanie ścinania w płaszczyźnie nachylonej pod kątem α= 45O – φ/2
W płaszczyźnie ścięcia w momencie ścięcia
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
W płaszczyźnie ścięcia w momencie ścięcia
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
Odkształcenie objętościowe jest równe:
Ev= delta V/V0
Ev=E1 * E2 * E3
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Ev= E1 – E2
Ev= delta V/V0
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku
przestrzennego stanu naprężenia:
Drugie prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
Pierwsze prawo Hooke’a
Prawo niezależności naprężeń
Uogólnione prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
W badaniu prostego ścinania ma miejsce:
Odkształcenie czysto objętościowe
Zmiana objętości i postaci
Dystorsja
Wyłącznie zmiana postaci
Wyłącznie zmiana objętości
Dystorsja
Wyłącznie zmiana postaci
Na wartość wyporu wody w gruncie wpływa:
Objętość rozpatrywanej bryły gruntu
Ciężar objętościowy gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Wartość ciśnienia porowego na danej głębokości
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ - ug
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
Które z poniższych stwierdzeń jest słuszne:
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie spływowe to:
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe może być przyczyną:
Przebicia hydraulicznego
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Spadku naprężeń efektywnych
Przebicia hydraulicznego
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Spadku naprężeń efektywnych
Który z wymienionych wymogów musi być spełniony w badaniu metodą R
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Pomiar ciśnienia porowego
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Konsolidacja wstępna
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Pomiar ciśnienia porowego
Konsolidacja wstępna
Które z wymienionych parametrów są parametrami ściśliwości:
Sigma’p
Mo
KG
Ce
av
Mo
av
Które z poniższych stwierdzeń jest słuszne:
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Badanie endometryczne jest jedną z metod typu CL
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Dla danego gruntu M0 jest mniejsze od E0
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Casagrande’a
Jaky
Terzaghi’ego
Laplace’a
Taylora
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to:
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia główne i 3 odkształcenia postaciowe