Fiszki

Mechanika gruntów 2017

Test w formie fiszek
Ilość pytań: 52 Rozwiązywany: 2767 razy
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz δ2=δ3
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz δ2=δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Największe napręzenie główne w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
. Koło naprężeń Mohra:
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Jest graficznym obrazem stanu naprężenia w punkcie
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Zastosowanego kryterium ścinania
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Zastosowanej ścieżki naprężenia
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Wytrzymałość na ścinanie jest oporem jaki stawia grunt siłom ścinającym:
W płaszczyźnie maksymalnych naprężeń stycznych
W granicznym stanie ścinania w płaszczyźnie nachylonej pod kątem α= 45O – φ/2
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
W płaszczyźnie ścięcia w momencie ścięcia
W płaszczyźnie najniekorzystniejszego działania naprężeń
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
W płaszczyźnie ścięcia w momencie ścięcia
Odkształcenie objętościowe jest równe:
Ev=E1 * E2 * E3
Ev= Ex + Ey + Ez
Ev= delta V/V0
Ev= E1 – E2
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Ev= delta V/V0
Ev =E1 + E2 + E3
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Uogólnione prawo Hooke’a
Prawo niezależności naprężeń
Prawo sprężystości dla ciał izotropowych
Drugie prawo Hooke’a
Pierwsze prawo Hooke’a
Uogólnione prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
W badaniu prostego ścinania ma miejsce:
Wyłącznie zmiana objętości
Zmiana objętości i postaci
Dystorsja
Wyłącznie zmiana postaci
Odkształcenie czysto objętościowe
Dystorsja
Wyłącznie zmiana postaci
Na wartość wyporu wody w gruncie wpływa:
Ciężar objętościowy gruntu
Objętość rozpatrywanej bryły gruntu
Wartość ciśnienia porowego na danej głębokości
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ - ug
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
Które z poniższych stwierdzeń jest słuszne:
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie spływowe to:
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe może być przyczyną:
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Utraty zdolności do przenoszenia przez grunt obciążeń
Powstania kurzawki
Spadku naprężeń efektywnych
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Utraty zdolności do przenoszenia przez grunt obciążeń
Powstania kurzawki
Spadku naprężeń efektywnych
Który z wymienionych wymogów musi być spełniony w badaniu metodą R
Konsolidacja wstępna
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Pomiar ciśnienia porowego
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Konsolidacja wstępna
Pomiar ciśnienia porowego
Które z wymienionych parametrów są parametrami ściśliwości:
KG
Mo
Sigma’p
av
Ce
Mo
av
Które z poniższych stwierdzeń jest słuszne:
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Dla danego gruntu M0 jest mniejsze od E0
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Badanie endometryczne jest jedną z metod typu CL
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Laplace’a
Taylora
Casagrande’a
Terzaghi’ego
Jaky
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to:
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia główne i 3 odkształcenia postaciowe

Powiązane tematy

#agh #wozniak #mechanikagruntow

Inne tryby