Fiszki

Mechanika gruntów 2017

Test w formie fiszek
Ilość pytań: 52 Rozwiązywany: 2771 razy
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz δ2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz δ2=δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Ciśnienie porowe w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Największe napręzenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Ciśnienie porowe w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
. Koło naprężeń Mohra:
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Jest graficznym obrazem stanu naprężenia w punkcie
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Zastosowanej ścieżki naprężenia
Składu granulometrycznego gruntu
Warunków konsolidacji i drenażu
Wartości naprężenia efektywnego
Zastosowanego kryterium ścinania
Składu granulometrycznego gruntu
Warunków konsolidacji i drenażu
Wartości naprężenia efektywnego
Wytrzymałość na ścinanie jest oporem jaki stawia grunt siłom ścinającym:
W granicznym stanie ścinania w płaszczyźnie nachylonej pod kątem α= 45O – φ/2
W płaszczyźnie maksymalnych naprężeń stycznych
W płaszczyźnie ścięcia w momencie ścięcia
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
W płaszczyźnie najniekorzystniejszego działania naprężeń
W płaszczyźnie ścięcia w momencie ścięcia
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
Odkształcenie objętościowe jest równe:
Ev= delta V/V0
Ev= Ex + Ey + Ez
Ev= E1 – E2
Ev =E1 + E2 + E3
Ev=E1 * E2 * E3
Ev= delta V/V0
Ev= Ex + Ey + Ez
Ev =E1 + E2 + E3
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
Drugie prawo Hooke’a
Prawo niezależności naprężeń
Pierwsze prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
W badaniu prostego ścinania ma miejsce:
Dystorsja
Zmiana objętości i postaci
Odkształcenie czysto objętościowe
Wyłącznie zmiana postaci
Wyłącznie zmiana objętości
Dystorsja
Wyłącznie zmiana postaci
Na wartość wyporu wody w gruncie wpływa:
Ciężar objętościowy gruntu
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Objętość rozpatrywanej bryły gruntu
Wartość ciśnienia porowego na danej głębokości
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ = δ’ + u
δ’ = δ – u
δ’ = δ - ug
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ = δ’ + u
δ’ = δ – u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
Które z poniższych stwierdzeń jest słuszne:
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Ciśnienie spływowe to:
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Ciśnienie spływowe może być przyczyną:
Utraty zdolności do przenoszenia przez grunt obciążeń
Powstania kurzawki
Spadku naprężeń efektywnych
Przebicia hydraulicznego
Wzrostu naprężeń efektywnych
Utraty zdolności do przenoszenia przez grunt obciążeń
Powstania kurzawki
Spadku naprężeń efektywnych
Przebicia hydraulicznego
Wzrostu naprężeń efektywnych
Który z wymienionych wymogów musi być spełniony w badaniu metodą R
Pomiar ciśnienia porowego
Konsolidacja wstępna
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Pomiar ciśnienia porowego
Konsolidacja wstępna
Które z wymienionych parametrów są parametrami ściśliwości:
av
Sigma’p
Ce
KG
Mo
av
Mo
Które z poniższych stwierdzeń jest słuszne:
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Badanie endometryczne jest jedną z metod typu CL
Dla danego gruntu M0 jest mniejsze od E0
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Taylora
Jaky
Terzaghi’ego
Casagrande’a
Laplace’a
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to:
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia główne i 3 odkształcenia postaciowe

Powiązane tematy

#agh #wozniak #mechanikagruntow

Inne tryby