Fiszki

Mechanika Gruntów 2

Test w formie fiszek Test wiedzy z zakresu mechaniki gruntów na studia.
Ilość pytań: 52 Rozwiązywany: 3032 razy
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Ciśnienie porowe w punkcie A
Największe naprężenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Ciśnienie porowe w punkcie A
Największe naprężenie główne w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Koło naprężeń Mohra:
Jest graficznym obrazem stanu naprężenia w punkcie
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Zastosowanego kryterium ścinania
Wartości naprężenia efektywnego
Zastosowanej ścieżki naprężenia
Warunków konsolidacji i drenażu
Składu granulometrycznego gruntu <-tu pośrednio tak, ale bezpośrednio zależy od kąta tarcia wewnętrznego
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Odkształcenie objętościowe jest równe:
Ev= Ex + Ey + Ez
Ev=E1 * E2 * E3
Ev =E1 + E2 + E3
Ev= E1 – E2
Ev= delta V/V0
Ev= Ex + Ey + Ez
Ev =E1 + E2 + E3
Ev= delta V/V0
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia
Pierwsze prawo Hooke’a
Uogólnione prawo Hooke’a
Prawo niezależności naprężeń
Prawo sprężystości dla ciał izotropowych
Drugie prawo Hooke’a
Uogólnione prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
W badaniu prostego ścinania ma miejsce:
Wyłącznie zmiana objętości
Dystorsja
Zmiana objętości i postaci
Odkształcenie czysto objętościowe
Wyłącznie zmiana postaci
Dystorsja
Wyłącznie zmiana postaci
Na wartość wyporu wody w gruncie wpływa:
Objętość rozpatrywanej bryły gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Wartość ciśnienia porowego na danej głębokości
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Ciężar objętościowy gruntu
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ’ = δ– w przypadku gdy nadciśnienie w porach gruntu uległo całkowitemu rozproszeniu
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ - ug
δ = δ’ + u
δ’ = δ – u
δ’ = δ– w przypadku gdy nadciśnienie w porach gruntu uległo całkowitemu rozproszeniu
δ’ = (δ – ug) + ϗ (ug –u)
δ = δ’ + u
δ’ = δ – u
Które z poniższych stwierdzeń jest słuszne:
Ciśnienie porowe jest tą częścią naprężeń efektywnych które przenosi woda
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie spływowe to:
Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa wywołana filtrującą wodą
Ciśnienie spływowe może być przyczyną:
Spadku naprężeń efektywnych
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Spadku naprężeń efektywnych
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ścinania
Pomiar ciśnienia porowego
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Pomiar ciśnienia porowego
Konsolidacja wstępna
Które z wymienionych parametrów są parametrami ściśliwości:
av
Ce
Mo
Sigma’p
KG
av
Mo
Które z poniższych stwierdzeń jest słuszne:
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Badanie endometryczne jest jedną z metod typu CL
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Dla danego gruntu M0 jest mniejsze od E0
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Taylora
Casagrande’a
Laplace’a
Jaky
Terzaghi’ego
Taylora
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Tensor naprężenia w punkcie M
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to:
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia główne i 3 odkształcenia postaciowe
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym:
Ścinania (D)
Odkształcenia płaskiego (G)
Sprężystości objętościowej (K)
Edometryczny ściśliwości pierwotnej (M0)
Sprężystości podłużnej (E)
Sprężystości objętościowej (K)
Sprężystości podłużnej (E)

Powiązane tematy

#mechanikagruntow

Inne tryby