Fiszki

MECHANIKA GRUNTÓW

Test w formie fiszek Woźniak AGH
Ilość pytań: 52 Rozwiązywany: 3505 razy
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Zastosowanej ścieżki naprężenia
Zastosowanego kryterium ścinania
Składu granulometrycznego gruntu
Warunków konsolidacji i drenażu
Składu granulometrycznego gruntu
Koło naprężeń Mohra:
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Jest graficznym obrazem stanu naprężenia w punkcie
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Jest graficznym obrazem stanu naprężenia w punkcie
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Ciśnienie porowe w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Największe napręzenie główne w punkcie A
Ciśnienie porowe w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Największe napręzenie główne w punkcie A
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Odkształcenie objętościowe jest równe:
Ev =E1 + E2 + E3
Ev= delta V/V0
Ev=E1 * E2 * E3
Ev= Ex + Ey + Ez
Ev= E1 – E2
Ev =E1 + E2 + E3
Ev= delta V/V0
Ev= Ex + Ey + Ez
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Prawo sprężystości dla ciał izotropowych
Pierwsze prawo Hooke’a
Prawo niezależności naprężeń
Drugie prawo Hooke’a
Uogólnione prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
W badaniu prostego ścinania ma miejsce:
Dystorsja
Zmiana objętości i postaci
Wyłącznie zmiana objętości
Wyłącznie zmiana postaci
Odkształcenie czysto objętościowe
Dystorsja
Wyłącznie zmiana postaci
Na wartość wyporu wody w gruncie wpływa:
Wartość ciśnienia porowego na danej głębokości
Ciężar objętościowy gruntu
Objętość rozpatrywanej bryły gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ = δ’ + u
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ’ = δ – u
δ’ = δ - ug
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ’ = δ – u
Które z poniższych stwierdzeń jest słuszne:
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Ciśnienie spływowe to:
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
b) Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa wywołana filtrującą wodą
b) Parcie spływowe przypadające na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe może być przyczyną:
Spadku naprężeń efektywnych
Przebicia hydraulicznego
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Spadku naprężeń efektywnych
Przebicia hydraulicznego
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Pomiar ciśnienia porowego
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Pomiar ciśnienia porowego
Konsolidacja wstępna
Które z wymienionych parametrów są parametrami ściśliwości:
Ce
Sigma’p
av
KG
Mo
av
Mo
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Jaky
Casagrande’a
Laplace’a
Taylora
Terzaghi’ego
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to:
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia główne i 3 odkształcenia postaciowe
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym:
Ścinania (D)
Edometryczny ściśliwości pierwotnej (M0)
Sprężystości objętościowej (K)
Odkształcenia płaskiego (G)
Sprężystości podłużnej (E)
Sprężystości objętościowej (K)
Sprężystości podłużnej (E)
Idealizacja zależności naprężenie – odkształcenie:
Może być przyczyną popełnienie znacznych błędów
Umożliwia przyjęcie (zastosowanie) odpowiedniej teorii obliczeniowej
Powinna być poprzedzona starannymi badaniami celem uzyskania rzeczywistej charakterystyki materiałowej badanego ośrodka
Polega na przyjęciu odpowiedniego modelu mechanicznego
Zawsze prowadzi do zwiększenia dokładności wyznaczanych parametrów
Umożliwia przyjęcie (zastosowanie) odpowiedniej teorii obliczeniowej
Polega na przyjęciu odpowiedniego modelu mechanicznego

Powiązane tematy

#wozniak

Inne tryby