Strona 4

Rachunek Wyrównawczy - GiK AGH Egzamin Inżynierski

Przejdź na Memorizer+
W trybie testu zyskasz:
Brak reklam
Quiz powtórkowy - pozwoli Ci opanować pytania, których nie umiesz
Więcej pytań na stronie testu
Wybór pytań do ponownego rozwiązania
Trzy razy bardziej pojemną historię aktywności
Aktywuj
Pytanie 25
Co zawiera macierz sigma^2G w modelu (L, AX, sigma^2G):
wariancje
współczynniki korelacji
wagi
wariancje i kowariancje
Pytanie 26
Dla modelu (L, AX, sigma^2G) kryterium MNK ma postać (przy czym G^-1=P)
(L-AX)t x P^-1 (L-AX) = min
(L-AX)t x P (L-AX) = min
(L-AX)^2 = min
(L-AX)t x (L-AX) = min
Pytanie 27
W trójkącie o znanych i bezbłędnych współrzędnych dwóch punktów pomierzono trzy kąty z jednakową dokładnością, wynoszącą +- 10 [cc]. Współrzędne trzeciego punktu wyrównano metodą pośredniczącą. Obliczono poprawki do wartości kątów pomierzonych. Ile wynosi odchylenie standardowe sumy kątów w trójkacie po wyrównaniu? : ERROR
30 [cc]
-30[cc]
0 [cc]
10 [cc]
Pytanie 28
Dla modelu (L, AX, sigma^2G) estymator wariancji resztowej ma postać ( V=AX-L n – liczba obserwacji u- - liczba niewiadomych ):
sigma^2 = VtP^-1V / n-u
sigma^2 = PVV / n-u
sigma^2 = VPV / n-u
sigma^2 = VtPV / n-u
Pytanie 29
Dla modelu (L, AX, sigma^2G) macierz A musi być zawsze:
prostokątna pionowa
kwadratowa symetryczna
symetryczna
prostokątna pozioma
Pytanie 30
Dla modelu (L, AX, sigma^2G) macierz L stanowi:
różnica wartości przybliżonych i obserwowanych
wartości przybliżone
wartości obserwowane
różnica wartości obserwowanych i przybliżonych
Pytanie 31
W modelu (L, AX, sigma^2G) wektor niewiadomych stanowi (?) :
odchyłki losowe do wielkości obserwowanych
przyrosty do przybliżonych parametrów
odchylenie standardowe
przyrosty do wielkości obserwowanych
Pytanie 32
W jakim przypadku macierz G w modelu (L, AX, sigma^2G) będzie macierzą jednostkową :
gdy układ jest mieszany , na przykład sieć kątowo-liniowa
gdy obserwacje są jednego rodzaju, na przykład obserwowane są tylko przewyższenia
gdy obserwacje są niezależne i są wykonane z jednakową dokładnością
gdy obserwacje są niezależne