Fiszki

Doświadczalnictwo leśne 2

Test w formie fiszek 2 kolos
Ilość pytań: 32 Rozwiązywany: 8762 razy
Rozkład empiryczny
To rozkład wyliczony na podstawie równania empirycznego
To rozkład teoretyczny oprarty na równaniach empirycznych
To rozkład liczebności cechy pomierzonej w rzeczywistości
To rozkład, kórego gęstość są opisane równaniami
To rozkład liczebności cechy pomierzonej w rzeczywistości
Rozkład teoretyczny
To rozkład liczebności cechy pomierzonej w rzeczywistości
To rozkład obserwowanych wartości cechy
To różnica pomiędzy liczebnością obserwowaną a wyliczoną z równania
To rozkład, którego gęstość (częstość) i dystrybuanta (częstość skumulowana) są opisane równaniami
To rozkład, którego gęstość (częstość) i dystrybuanta (częstość skumulowana) są opisane równaniami
Przy testowaniu różnic pomiędzy dwiema populacjami testem t Studenta dla zmiennych niezależnych hipoteza zerowa zakłada, że:
Brak jest równości średnich w porównywanych populacjach
Różnica pomiędzy populacjami jest istotna
Rozkłady zmiennej w badanych populacjach są zbliżone
Średnie w porównywanych populacjach są równe
Średnie w porównywanych populacjach są równe
Przy testowaniu różnic pomiędzy dwiema grupami testem U Manna - Whitneya hipoteza zerowa zakłada, że:
Średnie w porównywanych populacjach są równe
Brak jest równości średnich w porównywanych populacjach
Próby pochodzą z dwóch różnych populacji
Próby pochodzą z tej samej populacji
Próby pochodzą z tej samej populacji
Przy testowaniu różnic pomiędzy dwiema populacjami testem t Studenta dla zmiennych zależnych hipoteza zerowa zakłada, że:
Brak jest równości średnich w porównywanych populacjach
Średnie w porównywanych populacjach są równe
Różnica pomiędzy populacjami jest istotna
Różnica pomiędzy średnimi wartościami cechy w populacjach jest równa 0
Różnica pomiędzy średnimi wartościami cechy w populacjach jest równa 0
Przy testowaniu różnic pomiędzy dwiema populacjami testem Wilcoxona dla zmiennych zależnych hipoteza zerowa zakłada, że:
Średnie róźnice par wartości cechy są równe 0
Średnie w porównywanych populacjach są równe
Różnica pomiędzy populacjami jest istotna
Brak jest równości średnich w porównywanych populacjach
Średnie róźnice par wartości cechy są równe 0
Przy testowaniu różnic pomiędzy frakcjami (wskaźnikami struktury) hipoteza zerowa zakłada:
Rozkład cechy w porównywanych grupach jest zbliżony
Brak jest różnic pomiędzy średnimi wartościami cechy w grupach
Równość frakcji w porównywanych grupach
Frakcje w porównywanych grupach są różne
Równość frakcji w porównywanych grupach
Celem analizy korelacji jest:
Opisanie zależności pomiędzy zmiennymi
Matematyczne opisanie relacji pomiędzy zmiennymi
Opracowanie modelu opisującego relacje pomiędzy analizowanymi zmiennymi
Określenie siły związku pomiędzy zmiennymi
Określenie siły związku pomiędzy zmiennymi
Celem analizy regresji jest
Stwierdzenie występowania wzajemnego związku pomiędzy zmiennymi
Określenie siły związku pomiędzy zmiennymi
Stwierdzenie korelacji pomiędzy zmiennymi
Opracowanie modelu opisującego relacje pomiędzy analizowanymi zmiennymi
Opracowanie modelu opisującego relacje pomiędzy analizowanymi zmiennymi
Przy testowaniu istotności współczynnika korelacji hipoteza zerowa zakłada, że:
Współczynnik korelacji jest większy od zera
Współczynnik korelacji jest równy zero
Współczynnik korelacji jest istotny
Współczynnik korelacji jest różny od zera
Współczynnik korelacji jest równy zero
Wartość krytyczna współczynnika korelacji linowej Pearsona powyżej której współczynnik ten jest istotny zależy od:
Istotności badanej zależności
Liczebności próby
Zmienności korelowanych cech
Siły zależności pomiędzy analizowanymi zmiennymi
Liczebności próby
Współczynnik korelacji rang Spearmana stosuje się w przypadku:
Zmiennych o jednorodnych wariancjach
Zależności z dużą liczbą przypadków odstających
Zmiennych ciągłych o rozkładzie normalnym
Badania zależności więcej niż dwóch zmiennych ciągłych
Zależności z dużą liczbą przypadków odstających
Współczynnik korelacji rang Spearmana stosuje się w przypadku:
Zależności krzywoliniowych
Zmiennych ciągłych o rozkładzie normalnym
Badania zależności więcej niż dwóch zmiennych ciągłych
Zmiennych o jednorodnych wariancjach
Zależności krzywoliniowych
Współczynnik korelacji rang Spearmana stosuje się w przypadku:
Badania korelacji pomiędzy zmiennymi jakościowymi
Zmiennych o jednorodnych wariancjach
Badania zależności więcej niż dwóch zmiennych ciągłych
Zmiennych ciągłych o rozkładzie normalnym
Badania korelacji pomiędzy zmiennymi jakościowymi
Całkowita zmienność zmiennej niezależnej Y obliczana jest na podstawie:
Sumy kwadratów różnic pomiędzy wartościami wyznaczonymi z równania oraz poszczególnymi wartościami Y
Sumy kwadratów różnic pomiędzy poszczególnymi wartościami Y a wartościami modelowymi
Sumy kwadratów różnic pomiędzy wartościami średnimi i modelowymi
Sumy kwadratów różnic pomiędzy poszczególnymi wartościami Y a wartościami średnimi
Sumy kwadratów różnic pomiędzy poszczególnymi wartościami Y a wartościami średnimi
Zmienność zmiennej niezależnej Y niewyjaśniona przez model obliczana jest na podstawie:
Sumy kwadratów różnic pomiędzy obserwowanymi wartościami Y a wartościami modelowymi
Sumy kwadratów wartości modelowych
Sumy kwadratów różnic poszczególnych wartości Y od wartości średnich
Sumy kwadratów różnic pomiędzy wartościami średnimi i modelowymi
Sumy kwadratów różnic pomiędzy obserwowanymi wartościami Y a wartościami modelowymi
Zmienność zmiennej niezależnej Y wyjaśniona przez model jest obliczana na podstawie:
Sumy kwadratów różnic pomiędzy wartościami średnimi i modelowymi
Sumy kwadratów różnic poszczególnych wartości Y od wartości średnich
Sumy kwadratów różnic pomiędzy obserwowanymi wartościami Y a wartościami modelowymi
Sumy kwadratów różnic pomiędzy wartościami wyznaczonymi z równania oraz poszczególnymi wartościami Y
Sumy kwadratów różnic pomiędzy wartościami średnimi i modelowymi
Współczynnik determinacji informuje:
Czy zmienne objaśniające są ze sobą skorelowane
Jaka część zmienności nie została wyjaśniona przez model
Czy obserwowana korelacja jest dodatnia czy ujemna
Jaka część zmienności została wyjaśniona przez model
Jaka część zmienności została wyjaśniona przez model
Pomiędzy zmiennością całkowitą (SST), wyjaśnioną przez modeli (SSR) i nie wyjaśnioną przez model (SSE) zachodzi relacja:
SSR=SST+SSE
SST=SSR-SSE
SST=SSR+SSE
SSE=SST+SSR
SST=SSR+SSE
Współczynnik determinacji oblicza się na podstawie:
Ilorazu zmienności niewyjaśnionej przez model regresji (SSE) i zmienności całkowitej (SST)
Różnicy pomiędzy zmiennością całkowitą (SST) zmiennością wyjaśnioną przez model regresji (SSR)
Ilorazu zmienności wyjaśnionej przez model regresji (SSR) i zmienności całkowitej (SST)
Sumy zmienności wyjaśnionej przez model regresji (SSR) i zmienności niewyjaśnionej przez model regresji (SSE)
Ilorazu zmienności wyjaśnionej przez model regresji (SSR) i zmienności całkowitej (SST)

Powiązane tematy

#doswiadczalnictwolesne #ur

Inne tryby